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Research

A key goal of risk assessment is to develop a 
quantitative exposure–response model from 
which excess risk of disease can be estimated 
for any given exposure. Increasingly, human 
epidemiologic data are being used to construct 
these models that form the basis for risk esti-
mates. When appropriate epidemiologic studies 
with good exposure–response data are available, 
these data are usually preferred over labora-
tory animal data for risk assessment, because 
animal data introduce additional uncertainty 
due to cross-species extrapolation. Here we dis-
cuss risk assessment methods using epidemio-
logic data with a dichotomous disease outcome 
and observations across a variety of exposure 
levels, such that exposure–response modeling 
is possible, with cumulative exposure as the 
exposure metric of interest (as is common for 
chronic disease). We use a variety of relative 
risk (RR) models, both log-linear (log RR = 
β1 × exposure; no intercept term β0 is fit in 
Cox regression) and linear (of the form RR = 
1+ β × exposure). The models can include cova-
riates and different transformations of functions 
of exposure. Linear RR models (sometimes 
called excess RR models) have some advantages, 
that is, they are more easily interpretable than 
are log RR models, and they provide a straight 
line to the origin in the low-dose region.

When using human cancer data, the U.S. 
Environmental Protection Agency (EPA) 

often calculates the estimated lifetime expo-
sure concentration that results in an excess 
risk of disease of 1% [exposure concentra-
tion (EC01)], although other smaller ECs 
are sometimes used (U.S. EPA 2005). Larger 
ECs (e.g., EC05 or EC10) are generally used 
for rodent studies of carcinogens; however, 
for human cancer studies, extra risk seldom 
rises to such levels in the observable range 
of the data, which is especially true for rare 
cancers, such as nasopharyngeal cancer in 
relation to formaldehyde. The U.S. EPA then 
uses the exposure concentration correspond-
ing to the 95% lower bound on the EC01 
(i.e., the LEC01) as a point of departure for 
low-dose (low-exposure) linear extrapolation 
to estimate the risk associated with a one-unit 
increase in exposure (or dose). The LEC01 is 
essentially the same as the benchmark dose 
lower limit. Linear low-dose extrapolation 
from the point of departure to the origin 
is generally used to estimate low-dose risks 
for carcinogens, unless a nonlinear mode of 
action has been established (U.S. EPA 2005). 
The U.S. EPA uses the following formula to 
calculate excess risk (or extra risk) for a given 
level of exposure:

(Lifetime risk in exposed  
	 – lifetime risk in nonexposed)  
	 ÷ (1 – lifetime risk in nonexposed).	 [1]

The background risk of the disease of inter-
est (i.e., the lifetime risk in the nonexposed) is 
subtracted from 1 in the denominator to scale 
the excess risk to the population expected to be 
free of background disease, a procedure used 
conventionally with rodent data.

Lifetime risks for the exposed and 
nonexposed populations are calculated using 
actuarial methods in which mortality from 
other causes is taken into account. Exposure is 
assumed to be constant over time, and hence 
cumulative exposure increases over time. Age-
specific background rates for disease in the non-
exposed are multiplied by rate ratios estimated 
from the epidemiologic exposure–response 
model for given cumulative exposure levels to 
get age-specific rates of disease in the exposed, 
and lifetime risks for both exposed and nonex-
posed are calculated across ages.

Under certain circumstances, estimates of 
the exposure concentration corresponding to a 
1% excess risk can be highly dependent on the 
exposure–response model chosen to model the 
epidemiologic data. One such case where this 
occurs is when the observed exposure–response 
data level off or plateau (attenuate) at higher 
exposures, as has been observed frequently in 
occupational epidemiology. For example, this 
phenomenon has been seen for cancer in rela-
tion to dioxin, silica, 1,3-butadiene, cadmium, 
beryllium, radon daughters, diesel fumes, 
nickel, arsenic, ethylene oxide (EtO), and 
hexavalent chromium (Stayner et al. 2003). 
Such attenuation also has been observed in 
some studies of noncancer outcomes, for 
example, silica and kidney disease, and silica 
and silicosis mortality (e.g., Steenland et al. 
2001; ’t Mannetje et al. 2002).

A number of reasons for such an attenu-
ation effect have been advanced, including 
depletion of susceptible individuals in the 
population, saturation of biological pro-
cesses, misclassification of exposure at high 
levels, and the healthy worker–survivor effect 
(Stayner et al. 2003). Typically, models that 
provide a good fit to the data in this situation, 
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such as models in which the exposure is log 
transformed or square root transformed 
(e.g., power models), are supralinear in the 
low-exposure region such that slope of the 
exposure–response curve is high at low expo-
sures (see Rothman et al. 2008 for a discus-
sion of transformation of exposure variables). 
This high slope in the low-exposure region 
of interest results in EC01s that are very low. 
Furthermore, without linearity or near linear-
ity in the low-dose region, the slope of the 
linear low-exposure extrapolation used for risk 
assessment is very sensitive to the particular 
point of departure (e.g., LEC01 vs. LEC001) 
used for low-dose extrapolation. On the other 
hand, a model with a simple untransformed 
linear term for cumulative exposure may not 
fit the attenuating data as well and may under-
estimate risk in the low-dose region, resulting 
in excessively large estimates of EC01.

One alternative is to use a two-piece 
spline model, that is, a spline curve with one 
knot. Splines are piecewise polynomials of 
degree n, the simplest being a linear spline 
of degree 1. The point at which the pieces 
join is called a knot. Splines can be espe-
cially useful in approximating the shapes of 
exposure–response curves, which may vary 
substantially over the range of exposure (see 
Rothman et al. 2008 for a discussion of the 
application of splines in the analysis of epide-
miological data). In our approach, the data are 
used to fit log-linear or linear-risk models with 
two linear sections or pieces, which permit the 
exposure–response relation to have a higher 
slope in the lower exposure region than in 
the higher exposure region when it is attenu-
ated. Linear spline models can be generalized 
in a straightforward manner to accommodate 
more complex exposure–response relations 
by using additional knots to generate a mul-
tipiece linear spline model. In addition, qua-
dratic and cubic splines may be used instead 
of linear ones. Quadratic and cubic splines 
with multiple knots are commonly used to fit 
exposure–response data in epidemiology (Eisen 
et al. 2004; Harrell et al. 1988; Steenland and 
Deddens 2004). These more complex spline 
models have disadvantages for risk assessment 
in that their shape is dependent on multiple 
knot choices, their parameters are not easily 
interpretable, and they are not linear in the 
low-dose region. However, such models may 
help determine an approximate shape for sub-
sequent fitting of a parametric curve that may 
be more useful for risk assessment. Simpler 
polynomial or power models without sepa-
rate pieces (i.e., that are not splines) do not 
require knot choice (Greenland 1995; Stayner 
et al. 1997), nor do linear-exponential mod-
els that have been used in radiation research 
(Schneider and Walsh 2008).

Another model of potential interest is the 
Michaelis-Menten model of enzyme kinetics, in 

which the rate of reaction tails off as substrate 
concentration increases (Lehninger 1982). 
However, as previously noted, exposure–
response curves based on these models may be 
supralinear in the low-dose region when the 
exposure–response attenuates at high exposures.

Cohort data or nested case–control data, 
which are typically the basis of environmental 
or occupational risk assessment using human 
data, are usually fit using either survival analy-
sis, or conditional logistic regression, where 
data are grouped in risk sets matched on time 
via Cox regression. Both linear RR and log-
linear RR models for nested case–control data 
can be fit using common statistical programs 
such as SAS. Because these models are fit 
using the same likelihood (Cox’s partial like-
lihood), their likelihoods can be compared 
(Langholz and Richardson 2010). Here we 
provide illustrations of the application of a 
variety of RR models using data from a cohort 
study of workers exposed to the sterilant gas 
ethylene oxide (EtO).

Methods
Briefly, we previously conducted a cohort 
analysis, with a focus on breast cancer, of 7,576 
women exposed to EtO while sterilizing medi-
cal supplies (see Steenland et al. 2003 for details 
of this study). Here we focus on the 5,138 
women from that cohort who we were able to 
interview; of these women, 232 had been diag-
nosed with breast cancer. Estimated daily expo-
sures to EtO (average intensity) across different 
jobs and time periods ranged from 0.05 ppm 
to 77 ppm—the current U.S. Occupational 
Safety and Health Administration standard is 
1 ppm (U.S. Department of Labor 2007), with 
an average duration of exposure of 11 years 
and a median of 7 years (range, 1–50 years). 
Cumulative exposure was calculated by mul-
tiplying duration of exposure by intensity of 
exposure for each job or time period and sum-
ming across different jobs and time periods, 
with a 15-year lag period such that exposure 
within 15 years of case diagnosis (or the corre-
sponding date in noncases) was excluded from 
analyses. The 15-year lag was optimal (best 
fitting) in log-linear models (Steenland et al. 
2003), and we used it again here for linear RR 
models for consistency.

Models were fit using Cox regression, in 
which each case was compared with its matched 
risk set (with matching based on white or non-
white race), cumulative exposure was time 
dependent, and the time variable was age. 
Analyses included the following potential con-
founders: parity (continuous), date of birth, and 
family history of breast cancer in first-degree 
relatives (yes/no). In the linear RR models, one 
has the choice of combining additive terms for 
the main exposure with multiplicative terms 
for covariates, for example, RR = (1 + β1X1) 
× exp(β2X2) × exp(β3X3), where X2 and X3 

represent covariates, or of using a strictly addi-
tive model for both covariates and exposure 
(e.g., RR = 1 + β1X1 + β2X2 + β3X3). We 
present results for the strictly additive model, 
because an inspection of model likelihoods indi-
cated that this type of linear RR model fit the 
data best. SAS NLP (version 9.1; SAS Institute 
Inc., Cary, NC) was used for analyses of both 
log RR models and linear RR models, as sug-
gested by Langholz and Richardson (2010). As 
noted, the SAS procedure provides comparable 
model likelihoods for both types of models.

We present a variety of log RR and linear 
RR models, as described below, including a 
categorical exposure model (deciles), a linear 
(untransformed) exposure model (e.g., RR = 1 
+ cumexp), a model using the log transforma-
tion of exposure [(e.g., RR = 1 + log(cumexp)], 
a model using a square-root transforma-
tion (e.g., RR = 1 + square root (cumexp), a 
two-piece spline model, a linear-exponential 
model (used only in the linear RR case), and 
a Michaelis–Menten model. The square-root 
transformation fits curves that attenuate at 
high exposures and was chosen to represent 
the class of polynomial models.

We restricted ourselves to relatively simple 
statistical models and did not use any biologi-
cally based models (e.g., two-stage models), 
which are not commonly used for risk assess-
ment using human data.

In categorical analyses, exposure was clas-
sified into 11 groups, with the reference group 
including cases and noncases who had no EtO 
exposure > 15 years before the case was diag-
nosed with breast cancer (62 breast cancers), 
and 10 groups with cumulative exposures > 0 
with cut points selected such that an approxi-
mately equal number of breast cancer cases 
(n = 17) occurred in each decile: 1–355, 356–
842, 843–1,361, 1,362–2,187, 2,188–3,772, 
3,773–5,522, 5,523–7,891, 7,892–14,483, 
14,484–25,112, and > 25,112 ppm-days.

The linear spline model had the form (lin-
ear RR version) of RR = 1 + β1 × cumexp + 
β2z × maximum (0, cumexp – knot), where 
the value corresponding to maximum (0, 
cumexp – knot) is either the cumulative expo-
sure value less the exposure level used to define 
the knot, or 0 if the cumulative exposure is less 
than the value of the knot. The slope of the 
first exposure–response segment based on the 
model is represented by β1, whereas the slope 
of the second segment is β1 – β2. Knots for the 
two-piece spline model were chosen to maxi-
mize the log likelihood after trying knots at 
100 ppm-day intervals. In our case, there was 
a clear optimal knot at 5,800 ppm-days (lin-
ear RR model). [See Supplemental Material, 
Figure 1 (doi:10.1289/ehp.1002521).]

The linear-exponential model had the form 
RR = 1 + (β1 × cumexp) × exp(β2× cumexp). 
This model has been used in radiation stud-
ies (Schneider and Walsh 2008) as well as in 
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modeling other human carcinogens (e.g., arse-
nic) (Lubin et al. 2008) and allows for the 
linear exposure–response in the usual linear 
RR model to be modified to exhibit various 
degrees of curvature.

We also fit the Michaelis–Menten model 
of enzyme kinetics, in which the rate of 
reaction tails off as substrate concentration 
increases (Lehninger 1982). The model has 
been used rarely in epidemiology, but it is sim-
ple to implement, because it merely involves 
the transformation of exposure and the estima-
tion of one additional parameter to describe 
the exposure–response relationship. For the 
linear RR model, the model is RR = 1 + β1 
× [cumexp/(cumexp + k)], where k represents 
a constant, analogous to the Km used in bio-
chemistry for enzyme-substrate kinetics, and is 
estimated from the data.

Another option, not often used in etio-
logic research but used in studies of the 
effects of radiation (e.g., Little 2008), is not 
an RR model at all, but an excess absolute 
risk (EAR) model, also referred to as an addi-
tive Poisson model. This model has the form 
Rexp  = Rnonexp  + β  ×  cumexp. We fit this 
model following the presentation of Boshuizen 
and Feskens (2010), who present SAS code for 
the GENMOD procedure to fit this model via 
Poisson regression. Poisson regression requires 
categorized data for rates, unlike the Cox 
regression models used to fit the linear RR 
and log RR models here. We cross-categorized 
events and person-time by age, cumulative 
exposure (lagged 15 years), and calendar time 
for these analyses and compared the EAR 
model with the log RR model. We also used a 
scale-parameter statistic that adjusted for over- 
or underdispersion.

Excess risk for environmental exposure to 
EtO according to each model was calculated 
using life table techniques accounting for all-
cause mortality and applying an adaptation of 
the method described in the 1988 Biological 
Effects of Ionizing Radiation (BEIR) report 
(BEIR 1988). Because the exposure of inter-
est was environmental (i.e., risk to the general 
public due to EtO in ambient air) and was 
assumed to begin at birth but with a 15-year 
lag, risk was effectively considered to begin at 
age 15 years. More details on the excess risk 
calculation can be found in Supplemental 
Material (doi:10.1289/ehp.1002521) and also 
in Appendix C of the 2006 draft U.S. EPA can-
cer risk assessment for EtO (U.S. EPA 2006). 
Briefly, background mortality rates from U.S. 
vital statistics for 2000 (Centers for Disease 
Control and Prevention 2010) were stratified 
by 5-year age groups, and the probability of 
surviving each age interval was calculated. For 
incidence calculations, we calculated survival 
during the interval so that it was the product 
of the probability of surviving to the interval 
without a diagnosis of breast cancer and the 

probability of not getting incident breast cancer 
during the interval. Surveillance, Epidemiology 
and End Results Program (SEER; National 
Cancer Institute 2010) rates for incident breast 
cancer for 1997–2001 were similarly strati-
fied by 5-year age groups. Then, for each age 
interval, we calculated the cumulative prob-
ability of getting incident breast cancer dur-
ing the interval, given survival without breast 
cancer up to that interval. These age-specific 
probabilities of getting incident breast cancer 
were then summed across age groups to get 
the background lifetime (≤ age 85 years) risk 
of developing breast cancer (result: 0.147). We 
repeated this same procedure for the exposed 
group, except that the age-specific background 
incidence rates of breast cancer were multiplied 
by the rate ratio predicted by the exposure–
response model for the cumulative exposure 
for that age group. The age-specific cumulative 
exposures were themselves derived by assuming 
a constant exposure intensity (set at a given 
level), which then accumulated daily with 
a 15-year lag (i.e., starting at age 15 years). 
Lifetime risk for the exposed population was 
again the sum of the conditional probabilities 
of getting breast cancer in each age-group inter-
val, and excess risk was derived by subtracting 
the risk in the nonexposed population from the 
risk in the exposed (divided by 1 – lifetime risk 
in nonexposed). The EC01 (i.e., the estimated 
constant lifetime exposure level associated with 
a 1% excess lifetime risk of developing breast 
cancer) is determined by iteratively varying 
the exposure level until a lifetime excess risk of 
0.01 is obtained. Similarly, a 95% one-sided 
lower confidence limit (LEC01) is estimated 
using the upper one-sided confidence limit of 
the rate ratio (β + 1.64 × standard error of β) 
and iterating until the exposure resulting in a 
1% excess risk is found.

As noted by Langholz and Richardson 
(2010), in linear RR models the profile likeli-
hood may be less likely to be approximately 

normal than in log-linear models, so that 
p-values based on the Wald statistic and the 
change in log likelihood may differ, and Wald-
type confidence bounds may diverge from 
bounds derived from the profile likelihood. 
We found such divergence in our linear RR 
models and used bounds from the profile like-
lihood to estimate the LEC01 for all models 
except the two-parameter linear-exponential 
model, where we used the delta method to 
derive the variance of the RR and the upper 
one-sided 95% confidence intervals (CIs).

Results
Table 1 gives the model fit results for the 
log RR and linear RR models, respectively. 
Overall, the linear RR models fit the data bet-
ter than the log RR models, based on the cor-
responding model likelihoods. Based on the 
Akaike information criterion (AIC; Akaike 
1974), which is a measure of model fit, where 
a lower value signifies a better fit, the linear 
RR model using the two-piece linear spline fits 
better than all other models except the square-
root model, which provided the best global fit 
among both log-linear and linear RR models.

Results for Michaelis-Menten model are 
not shown. Graphically, this model looked 
almost identical to the square-root model, 
but the goodness of fit was not as good as 
the fit for the square-root model. The AIC 
was 1951.3; the best estimated k was about 
13,000 ppm-days.

The EAR (additive Poisson) model did 
not fit as well as the RR models. Because the 
Poisson model requires categorized data and has 
a different likelihood than do the Cox models 
used elsewhere here, it is not possible to directly 
compare the goodness of fit between the 
Poisson EAR model and the Cox RR models. 
Therefore, we compared the AIC from an EAR 
model with the AIC from a log RR Poisson 
model. The EAR model fit considerably less 
well than the log RR Poisson model (AIC 1918 

Table 1. Log RR and linear models.

Exposure df p-Valuea –2LL AICb

Log RR models
Log transformed 1 0.03 1944.17 1956.17
Untransformed (linear) 1 0.04 1944.68 1956.68
Categorical 10 0.29 1936.91 1966.91
Two-piece linear spline 2 0.01 1940.48 1954.48
Square root transformed 1 0.005 1941.03 1953.03

Linear RR models
Log transformed 1 0.0030 1942.27 1954.27
Untransformed (linear) 1 0.0096 1940.26 1952.26
Categorical 10 0.1249 1933.94 1963.94
Two-piece linear spline 2 0.0023 1936.94 1950.94
Square root transformed 1 0.0007 1937.49 1949.49
Linear exponential 2 0.0035 1937.78 1951.78

Abbreviations: df, degrees of freedom; –2LL, –2 log likelihood. 
ap-Value for chi square, the change in –2LL by the addition of exposure variable(s) to model. bAll models included three 
indicator variables for date of birth, one for family history, and one for parity. The –2LL for a model that included only the 
covariates date of birth, parity, and first-degree relative with breast cancer was 1948.93, and the –2LL for a model with 
no covariates was 1967.81. The AIC is derived as –2LL + 2 × (number of parameters estimated in model); a smaller AIC 
value indicates a better fit, adjusted for different number of parameters in the model.



Steenland et al.

834	 volume 119 | number 6 | June 2011  •  Environmental Health Perspectives

vs. 1867; smaller is better). The scale parameter 
was close to 1 with both models. Consequently, 
we do not present quantitative risk estimates 
based on the EAR model.

Figures 1 and 2 show the results for the 
log RR and linear RR models graphically. The 
shapes of the curves for corresponding log RR 
and linear RR models are similar. RR estimates 

based on the categorical models do not follow 
a monotonic trend with increasing exposure, 
but the overall pattern suggests increasing RRs 
with increasing exposure, with some attenua-
tion at the highest exposure decile (i.e., a line 
fit through the other deciles would pass well 
above the highest decile). Note that although 
the cut points for forming decile categories 
were the same in Figures 1 and 2, the linear 
RR model gives different categorical results 
than the log-linear model. Modeling exposure 
as a simple continuous term appears to under-
estimate the exposure–response relationship 
suggested by the categorical point estimates 
from corresponding log RR and linear RR 
models. Modeling log-transformed exposure 
produces log RR and linear RR model esti-
mates that conform reasonably well to the 
categorical point estimates, but the exposure–
response curve is very steep in the low-dose 
region. Estimates from the two-piece spline 
models appear to conform well to the categori-
cal results and also suggest a pronounced expo-
sure–response slope for exposures below the 
knot (< 5,600 ppm-days). The square-root log 
RR and linear RR models also fit the data well 
but generate a supralinear shape (although less 
pronounced than the log-transform model) in 
the low-dose region.

Table 2 presents the resulting exposure 
levels that correspond to a 1% lifetime extra 
risk of breast cancer (EC01) based on the five 
different linear RR models, as well as the 
LEC01 based on using the upper one-sided 
95% bound for the exposure–response coeffi-
cient. The linear exposure model, with its low 
slope, had the highest EC01, whereas the log-
transformed exposure model had the lowest, 
and the two-piece spline had an EC01 between 
the two. The EC01 for the two-piece spline 
resulted entirely from the first segment of 
the spline model, because the 1% excess life-
time risk resulted from cumulative exposures 
< 5,800 ppm-days, that is, within the range of 
exposures corresponding to the first segment 
of the estimated exposure–response curve.

Sensitivity analyses. We conducted several 
analyses to evaluate the sensitivity of results to 
different model specifications, including the 
use of a three-piece linear spline model with 
a second knot at 7,200 ppm-days, which was 
the optimal location based on a comparison of 
model fits. However, this model did not sig-
nificantly improve the fit to the data over that 
of a two-piece linear spline model (data not 
shown). We also evaluated truncated linear 
RR models after excluding observations in the 
top 5% of the exposure distribution where the 
most extreme outliers in cumulative exposures 
occurred. The model of the untransformed 
(linear) exposure was the most affected by this 
exclusion, which resulted in a sharp increase 
in slope indicating its sensitivity to data in the 
high-exposure range (Figure 3). The EC01 for 

Figure 1. Log RR models for breast cancer incidence and for EtO exposure. Log RR models as used here 
have the form log RR = β1(cumexp). Spline refers to a two-piece spline log RR model with a single knot 
at 5,800 ppm-days. Log square-root, log-log, and log-linear models refer to log RR models with exposure 
square root transformed, log transformed, or untransformed, respectively. Individual points indicate esti-
mates from a model with exposure categorized into deciles among the exposed (reference = no exposure, 
points graphed at the midpoint of each exposure interval).
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Figure 2. Linear RR models for breast cancer incidence and EtO exposure. Linear RR models as used here 
have the form RR = 1 + β1(cumexp). Spline refers to a two-piece spline linear RR model with a single knot 
at 5,800 ppm-days. Square root, linear-log, and linear models refer to the linear RR models with exposure 
square root transformed, log transformed, or untransformed, respectively. The linear-exponential model 
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with exposure categorized into deciles among the exposed (reference = no exposure; points graphed at 
the midpoint of each exposure interval).
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the truncated data changed substantially for 
the linear model (from 0.040 to 0.020 ppm, 
a 50% decrease) but less for the log-transform 
model (from 0.0005 to 0.0006 ppm, a 20% 
increase) and for the two-piece model (from 
0.0010 to 0.0011 ppm, a 10% increase); we 
observed no change for the linear-exponen-
tial model or the square-root model (data 
not shown).

In addition, we fit the linear RR model 
after excluding all observations with expo-
sures above 5,800 ppm-days, the location of 
the knot used in the two-piece spline model, 
which eliminated the top 20% of exposures. 
The slope of the exposure–response curve for 
exposure modeled as an untransformed linear 
variable was similar (8% higher) to the slope 
of the lower piece of the two-piece spline 
model in Figure 2, but its variance was 34% 
higher (data not shown). This finding illus-
trates that the slope of the estimated low-dose 
exposure–response relationship based on the 
two-piece spline model is not (as might be 
expected) the same as the slope that would 
be obtained by simply truncating the data at 
the preferred knot, because the two segments 
of the curve produced by the spline model 
covary, so that one influences the other.

We believe it is generally preferable to 
use the complete data set to evaluate the low-
dose region rather than some truncation of 
the data that would allow an untransformed 
linear model to fit well for two main reasons:  
to avoid some arbitrary point to truncate the 
data (in the two-piece model, the likelihood 
function provides an objective mechanism 
for knot selection), and to avoid information 
in the upper-dose range that can affect the 
slope and variance of the exposure–response 
relationship in the low-dose range.

We also conducted analyses looking at 
a possible effect of dose rate (using the lin-
ear RR model), which for some carcinogens 
modifies the effect of cumulative dose (e.g., 
Lubin et al. 2008). Specifically, we divided 
the observations into high- and low-dose 
rate groups defined as an average intensity 

of exposure < 1 ppm and > 1 ppm, which is 
the current occupational standard and which 
divided the cases into approximately equal 
groups. Interaction terms between average 
intensity (dichotomous indicator term) and 
either linear (untransformed) exposure or the 
square root of exposure were not close to sta-
tistical significance (p = 0.40 and 0.57, respec-
tively). These results indicate that the effect of 
cumulative dose did not change significantly 
according to high- or low-dose rate.

Discussion
Our goal here has been to illustrate key issues 
in risk assessment related to the choice of a 
statistical model when risk attenuates at high 
exposures. We have chosen to rely on rela-
tively simple, easily interpretable models that 
may be appropriate to risk assessors operating 
in a public health setting, without entering 
into a comprehensive discussion of statisti-
cal modeling of exposure–response trends. 
Outside the realm of risk assessment, a wide 
variety of options are available for choos-
ing the best model, but we argue that these 
choices are somewhat more limited if they are 
to conform to the needs of the risk assessor, 
especially if the goal is estimation of permis-
sible environmental levels rather than occu-
pational levels. Then the shape of the curve 
in the low-dose region is key. When there is 
a choice of different models that fit the data 
well, models that are approximately linear 
in the low-dose region are preferred, in part 
because they will not be highly sensitive to 
the relatively arbitrary choice of a point of 

departure for low-dose linear extrapolation. 
The point of departure is particularly sensi-
tive to the shape of the curve in the low-dose 
region, whereas overall model fit pertains to 
the validity of the model across the entire 
exposure range.

Occupational studies for a wide variety of 
chemicals, often used for risk assessment for 
both occupational and environmental settings, 
have frequently shown exposure–response 
relationships in which the risk of cancer pla-
teaus or attenuates at high exposures (Stayner 
et al. 2003). A number of reasons have been 
advanced to explain such attenuation, includ-
ing depletion of susceptible individuals in 
the population, saturation of biological pro-
cesses, misclassification of exposure at high 
levels, and the healthy worker survivor effect. 
One might argue that the principal reason 
for such attenuation is increased misclassifi-
cation and mismeasurement of exposure at 
high levels, in which case it might make more 
sense to attempt to correct the exposure–re-
sponse data for measurement error than to 
model mismeasured data. There are several 
arguments against this approach. First, from 
a practical standpoint, it is rare that a gold 
standard of well-measured data is available 
to estimate the direction and amount of mis-
measurement. Second, there is no reason a 
priori to assume that measurement error is 
the principal reason for observed attenuation, 
and it is not necessarily clear that attenuation 
will result from this error. Measurement error 
that is nondifferential and of the Berkson 
type (Armstrong 1998; as in occupational 

Table 2. EC01 estimates for linear RR models.

Exposure EC01 (ppm) LEC01
a (ppm)

Untransformed (linear) 0.0400 0.0165
Log transformed 0.00005 0.00002
Two-piece linear spline 0.0100 0.0039
Square root transformed 0.0016 0.0003
Linear exponential 0.0113 0.0058
aLower CI for EC01, using upper one-sided 95% con-
fidence limit for exposure–response coefficient, as 
determined using profile likelihood for single parameter 
models and for the first piece of the two-piece spline 
model, applicable in the low-dose region of interest 
(below the knot, where the second parameter is 0). For 
the two-parameter linear-exponential model, we used 
the delta method to derive the variance of the RR and 
upper one-sided 95% CI using Wald-type variances for 
each parameter, given the added computational com-
plexity of deriving profile-based bounds using the joint 
likelihood for both parameters.

Figure 3. Linear RR models with top 5% of exposure eliminated (> 21,219 ppm-days). Models correspond to 
those described in Figure 2.
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studies where the mean job-specific exposure 
is assigned to all workers in that job) with 
constant error variance across exposure levels 
has been shown in RR models to result in a 
downward bias on the exposure–response rela-
tionships in RR models (Armstrong 1990). 
However, others have shown in log-linear 
RR models that increased mismeasurement 
of high exposures versus low exposures does 
not necessarily lead to estimates of exposure–
response relationships biased to the null and 
can, in fact, lead to overestimates of expo-
sure–response relationships (Steenland and 
Deddens 2000). Whether one might expect 
attenuation due to mismeasurement in linear 
RR models under this scenario is not clear.

We argue that a two-piece spline model 
is a good candidate for risk assessment when 
there is risk attenuation at high exposure 
levels. We have used data on breast cancer 
incidence and EtO exposure, which exhibit 
attenuation, to illustrate the two-piece spline 
model; however, as noted above, there are 
many other examples where this approach 
would be suitable. We also argue that addi-
tive models (linear RR) offer some advantages 
for risk assessors, namely, easy interpretabil-
ity and a strictly linear form in the low-dose 
region of interest.

When there is attenuation, the risk asses-
sor has a number of choices. For example, 
if the exposure–response curve plateaus as 
exposure increases, the risk assessor may face 
a dilemma of whether to consider all the data 
or make some relatively arbitrary decision to 
exclude high-exposure data altogether from 
the exposure–response model to focus on the 
low-exposure region that is the most infor-
mative and relevant for estimating low-dose 
risk (e.g., from environmental exposures). We 
have argued that the two-piece linear model 
provides one solution to this dilemma that 
avoids the need to make a subjective decision 
about what to define as high exposure and 
has the added benefit of a linear exposure–
response curve in the low-exposure region.

One potential disadvantage to the two-
piece spline model can arise in choosing the 
knot based on the likelihood, particularly 
when data are sparse. Sometimes the best like-
lihood for choosing the knot is not much bet-
ter than another, that is, the profile likelihood 
is fairly flat or has several local maxima. This 
will also occur when the data are not sparse 
but the two-piece spline model does not pro-
vide a good fit to the data.

The variety of models illustrated here pro-
vide a statistically reasonable fit to the overall 
breast cancer morbidity data considered, but 
they have very different shapes in the low-
exposure region, resulting in very different 
EC01 estimates. The two-piece spline model 
yields estimates between the more extreme 
results obtained from the log-transformed 

model (very supralinear in the low-exposure 
region) and the untransformed (linear in 
exposure) model (too sublinear in the low-
exposure region). The square-root model 
also is somewhat supralinear in the low-dose 
region, resulting in a low EC01.

An alternative to choosing the best of a 
series of models that fit the data reason-
ably well is model averaging, in which the 
exposure–response results from different mod-
els are averaged using some sort of weighting 
scheme. When these models have the same 
parametric form, a weighted average of the 
parameters can be calculated using weights 
determined from the likelihood in a frequen-
tist setting or from Bayesian posterior prob-
abilities for the parameters (assumed to be 
random variables). Schwartz et al. (2008) pro-
vide an example from air pollution where a 
five-knot linear spline model was used with 
different lags on pollution exposure. A series 
of models was run in which the change in 
slope at each knot was constrained in differ-
ent ways (e.g., a threshold model in which 
the slope of the first piece of the linear model 
was constrained to be 0). The parameters for 
slope in each piece were then averaged using 
as weights the Bayesian posterior probabilities, 
with noninformative priors or priors favor-
ing a nonthreshold model over a threshold 
model. Wang et al. (2004) provide a good 
discussion of this same type of model averag-
ing in a slightly different context. They show 
via simulation how Bayesian model averaging 
can outperform backward and forward selec-
tion techniques to pick the best model from 
a large set of candidate predictors, then show 
how parameter estimates for a given set of pre-
dictors from the best models can be averaged 
using posterior probabilities to allow inference 
about these parameters while reflecting the 
uncertainty of model selection.

When the models have different paramet-
ric forms, as in our case (e.g., square root–
transformed model, two-piece model), model 
averaging might be done via calculation of dif-
ferent EC01 values and taking a weighted aver-
age across them using model likelihoods or 
Bayesian posterior probabilities. Noble et al. 
(2009) have used model averaging to calculate 
a benchmark concentration, analogous to an 
EC, in a study of lung function and coal dust, 
using as weights Bayesian posterior probabili-
ties with noninformative priors, across linear, 
square root, and quadratic models, with the 
selection of a set of covariates, such as height 
and weight, from among six possible ones. 
The subset of best models used in the model 
averaging, out of all possible models, was 
chosen using a type of selection rule called 
Occam’s window (Noble et al. 2009), based 
on the posterior likelihood for the model. 
One difficulty which arises is deciding what 
the necessarily arbitrary cut point will be for 

excluding some range of poorly fitting models 
from the average.

Model averaging makes more sense, in 
general, in situations where the results of dif-
ferent models are similar, for example, using 
a set of best models chosen via Occam’s win-
dow. Assuming a relatively broad inclusion 
rule, a model result that is an outlier on one 
side of the central tendency may have undue 
influence on the model average if the fit of the 
outlier model is reasonable (thus increasing the 
weight of its contribution to the average across 
all models) and if it is not balanced by an out-
lier on the other side of the central tendency. 
In our data, we found that different models, all 
of which fit the data reasonably well, produced 
very different estimates of EC01. Although 
an AIC-weighted average of EC01 estimates 
from Table 2 yielded a model-average EC01 of 
0.013, which was not far from the estimates 
based on the two-piece linear and linear-
exponential models, this occurred because the 
two outliers (from the linear and log-trans-
formed exposure models) were on opposite 
sides of 0.013—a situation that might not 
have occurred if we had overlooked one model 
form or another. Furthermore, models that 
are not linear in the low-dose region (which is 
approximately 0–1,000 ppm in our data) will 
lead to very different estimates of permissible 
exposure levels, depending on the somewhat 
arbitrary choice of EC01 or EC05 or EC001, for 
example, as the point of departure for low-dose 
extrapolation. In our case, limiting ourselves to 
models that were approximately linear in the 
low-dose region implies limiting ourselves to 
the linear exposure model, the two-piece lin-
ear model, and perhaps the linear-exponential 
model. In our view the linear model is an out-
lier that did not fit the data as well as the other 
two models, and we would not advise averag-
ing these three models. In sum, from both a 
public health and risk assessment perspective, 
we believe it best to choose a best model based 
on a combination of model fit and a desire 
that the resulting model be linear or close to 
linear in the low-dose region.
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